Manuela Cortes Granados's Comprehensive Technical Proficiency Matrix

Tema / Subtema JerarquΓ­a completa Comentarios / Detalles
πŸ“ 1. Databases  
πŸ“ 1.1. Relational  
1.1.1. Oracle Managed and maintained Oracle 12c/19c databases, ensuring high availability, performance tuning, and secure backup/recovery. Developed and optimized PL/SQL procedures, functions, triggers, and packages to support business-critical applications. Implemented data migration and replication strategies using Oracle Data Pump and GoldenGate, while monitoring performance through Oracle Enterprise Manager and optimizing SQL queries for efficiency. Collaborated with development teams on schema design, indexing, and best practices, and handled database patching, upgrades, and troubleshooting across production and staging environments.
πŸ“ 1.1.2. MS Sql Server Managed and maintained MS SQL Server databases (2016/2019), ensuring high availability, performance tuning, and reliable backup/recovery. Developed and optimized T-SQL stored procedures, functions, views, and triggers to support critical applications. Implemented data migration, replication, and ETL processes, while monitoring performance using SQL Server Management Studio and Query Store to optimize queries. Collaborated with development teams on database design, indexing, and best practices, and performed regular patching, upgrades, and troubleshooting across production and staging environments.
πŸ“„ 1.1.2.1. SQL Server Reporting Services (SSRS)  
πŸ“„ 1.1.3. Informix  
πŸ“„ 1.1.4. Postgresql With PostgreSQL, I’ve designed normalized relational schemas, implemented complex joins and CTEs (Common Table Expressions), and used stored procedures and triggers to handle business logic. A challenging example was optimizing a reporting engine that processed millions of records daily. I refactored queries, created materialized views, and implemented indexing strategies to cut down response time from minutes to under five seconds.
πŸ“„ 1.1.5. MySQL  
πŸ“ 1.2. No Relational  
πŸ“„ 1.2.1. MongoDB  
πŸ“ 2. AI/ML Designed, developed, and deployed AI/ML solutions using Python, PyTorch, and Hugging Face Transformers to solve complex business problems. Built and fine-tuned models for NLP, computer vision, and predictive analytics, leveraging frameworks like LangChain and LlamaIndex for retrieval-augmented generation (RAG) and vector databases. Implemented end-to-end ML pipelines, including data preprocessing, model training, evaluation, and deployment, ensuring scalability and performance. Collaborated with cross-functional teams to integrate AI/ML solutions into applications and optimize workflows for real-time inference.
πŸ“„ 2.1. LangChain From 2023 to 2025, developed AI applications in Python 3.10 using LangChain 0.1+ to build advanced language model pipelines, enabling contextual retrieval, multi-step reasoning, and conversational AI solutions. Integrated LangChain with vector databases and external data sources to implement retrieval-augmented generation (RAG) workflows. Designed and optimized prompt engineering, chaining logic, and memory management to improve model performance and response accuracy. Collaborated with teams to deploy LangChain-based solutions in production environments for NLP tasks, chatbots, and intelligent automation.
πŸ“„ 2.2. PyTorch From 2022 to 2025, developed machine learning and deep learning models using Python 3.10 and PyTorch 2.1 for NLP, computer vision, and predictive analytics tasks. Built, trained, and fine-tuned neural networks, optimizing architectures, loss functions, and hyperparameters to achieve high accuracy and performance. Implemented end-to-end ML pipelines including data preprocessing, model evaluation, and deployment to production environments. Collaborated with cross-functional teams to integrate PyTorch models into applications, ensuring scalability, reliability, and real-time inference.
πŸ“„ 2.3. LlamaIndex AI/ML β†’ LlamaIndex
πŸ“„ 2,4, Hugging Face Transformers AI/ML β†’ Hugging Face Transformers
πŸ“„ 2.5. Retrieval Augmented Generation (RAG) AI/ML β†’ Retrieval Augmented Generation (RAG)
πŸ“ 2.6. vector databases AI/ML β†’ vector databases
πŸ“„ 2.6.1. FAISS AI/ML β†’ vector databases β†’ FAISS
πŸ“„ 2.6.2. Pinecone AI/ML β†’ vector databases β†’ Pinecone
πŸ“ 2.7. LLM-based systems AI/ML β†’ LLM-based systems
πŸ“„ 2.7..1 AutoGen AI/ML β†’ LLM-based systems β†’ AutoGen
πŸ“„ 2.7.2. Evaluation metrics for assessing LLM performance AI/ML β†’ LLM-based systems β†’ Evaluation metrics for assessing LLM performance
πŸ“„ 2.8. OpenAI API AI/ML β†’ OpenAI API
πŸ“„ 2.9. multi-agent workflows that interact via APIs and LLMs AI/ML β†’ multi-agent workflows that interact via APIs and LLMs
πŸ“„ 2.10. ML workflows with Kubeflow AI/ML β†’ ML workflows with Kubeflow
πŸ“„ 2.11. NLP models AI/ML β†’ NLP models
πŸ“„ 2.12. Deploying AI models into applications AI/ML β†’ Deploying AI models into applications
πŸ“ 2.13. IA Models  
πŸ“„ 2.13.1. YOLOv8  
πŸ“„ 2.13.2. LayoutLMv3  
πŸ“„ 2.13.3. YOLOv8  
πŸ“„ 2.13.4. Detectron2  
πŸ“ 2.14. AI Providers AI/ML β†’ AI Providers
πŸ“ 2.14.1. Gemini AI/ML β†’ AI Providers β†’ Gemini
πŸ“„ 2.14.1.1. backend integrations and analytics-layer configurations AI/ML β†’ AI Providers β†’ Gemini β†’ backend integrations and analytics-layer configurations
πŸ“„ 2.14.2. Cursor AI/ML β†’ AI Providers β†’ Cursor
πŸ“„ 2.14.3. Windsurf AI/ML β†’ AI Providers β†’ Windsurf
πŸ“„ 2.14.4. Loveable AI/ML β†’ AI Providers β†’ Loveable
πŸ“„ 2.14.5. Vertex AI  
πŸ“„ 2.14.6. Pinecone  
2.14.6. Model Training  
πŸ“„ 2.14.6.1.Bedrock  
πŸ“„ 2.15. OpenAI Foundry y MosaicML AI/ML β†’ OpenAI Foundry y MosaicML
2.16. GenAI  
πŸ“ 2.17. Machine Learning  
πŸ“„ 2.17.1. SVM  
πŸ“„ 2.17.2. boosting  
πŸ“„ 2.17.3. bagging  
πŸ“„ 2.17.4. random forest  
πŸ“„ 2.18. Deep Learning  
πŸ“ 2.19. NLP  
πŸ“„ 2.19.1. NLP Techniques  
πŸ“ 3. Backend Systems  
πŸ“ 4. APP Development/Mobile Development  
πŸ“„ 4.1. React Native  
πŸ“„ 4.2. .Kotlin  
πŸ“„ 4.3. Flutter (Dart)  
πŸ“„ 4.4. .NET MAUI  
πŸ“„ 4.5. Xamarin  
πŸ“„ 4.6. Expo  
πŸ“ 5. Version Control  
5.1. GIT  
πŸ“ 6. iPaaS  
6.1. MuleSoft  
6.2. Boomi  
6.3. Workato  
πŸ“ 7. Patterns/Architectures  
πŸ“„ 7.1. SOLID  
πŸ“„ 7.2. Mediator  
πŸ“„ 7.3. Pub/Sub  
πŸ“ 7.4. SW Architectures Mobile  
πŸ“„ 7.4.1. BLoC  
πŸ“„ 7.4.2. Provider  
πŸ“„ 7.4.3. Riverpod  
πŸ“„ 7.4.4. MVVM  
πŸ“„ 7.4.5. MVI  
πŸ“„ 7.5. Event-Driven Architecture  
πŸ“„ 7.6. GoF  
πŸ“„ 7.7. CQRS  
πŸ“„ 7.9. Sidecar  
πŸ“„ 7.10. DRY  
πŸ“„ 7.11. YAGNI  
πŸ“„ 7.12. KISS  
πŸ“„ 7.13. SLA  
πŸ“ 8. SwiftUI  
πŸ“ 9. Docker/Kubernates  
πŸ“ 10. Cloud  
πŸ“ 10.1. AWS  
πŸ“„ 10.1.1. Amazon Bedrock  
πŸ“„ 10.1.2. IAM policies or roles to control access  
πŸ“„ 10.1.3. AWS Lambda  
πŸ“„ 10.1.4. Amazon AppSync  
πŸ“„ 10.1.5. AWS Secrets Manager (SS)  
πŸ“„ 10.1.6. AWS Key Management Service (KMS)  
πŸ“„ 10.1.7. AWS Glue  
πŸ“„ 10.1.8. RDS  
πŸ“„ 10.1.9. EC2  
πŸ“„ 10.1.10. DynamoDB  
πŸ“„ 10.1.11. Elastic Beanstalk  
πŸ“„ 10.1.12. ECS  
πŸ“„ 10.1.13. CloudWatch  
πŸ“„ 10.1.14. SNS  
πŸ“„ 10.1.15. SQS  
πŸ“„ 10.1.16. SES  
πŸ“„ 10.1.17. IAM policies  
πŸ“„ 10.1.18. AWS Glue Blob Storage  
πŸ“„ 10.1.19. EventBridge  
πŸ“„ 10.1.20. API Gateway  
πŸ“„ 10.1.21. EKS  
πŸ“„ 10.1.22. ECS  
πŸ“ 10.2. Azure  
πŸ“„ 10.2.1. Azure Data Factory  
πŸ“„ 10.2.2. Azure Databricks  
πŸ“„ 10.2.3. Azure synapse  
πŸ“„ 10.2.4. Azure Datalake  
πŸ“„ 10.2.5. Azure Fabric  
πŸ“„ 10.2.6. PENDING  
πŸ“„ 10.2.7. PENDING  
πŸ“„ 10.2.8. PENDING  
πŸ“„ 10.2.9. Azure DevOps Services  
πŸ“„ 10.2.10. Azure DevOps  
πŸ“„ 10.2.11. Azure Bot Framework  
πŸ“„ 10.2.12. Azure Sypnase  

πŸ“„ 10.2.13. Azure Kubernetes Services

 
πŸ“ 10.3. GCP  
πŸ“„ 10.3.1. Google BigQuery  
πŸ“ 13. MLOps practices  
πŸ“„ 13.1. MLflow for model tracking and lifecycle management  
πŸ“ 14. Programming Languages  
πŸ“„ 14.1. Java  
πŸ“„ 14.2. Go  
πŸ“ 14.3. Python  
πŸ“„ 14.3.1. Flask  
πŸ“„ 14.3.2. FastAPI  
πŸ“„ 14.3.3. Django  
πŸ“„ 14.3.4. Pandas  
πŸ“„ 14.3.5. PySpark  
πŸ“„ 14.3.6. Scikit-learn  
πŸ“„ 14.3.7. XGBoost  
πŸ“„ 14.3.8. LightGBM  
πŸ“„ 14.3.9. Statsmodels  
πŸ“„ 14.3.10. Hadoop/Spark  
πŸ“„ 14.3.11. TensorFlow  
πŸ“„ 14.3.12. NumPy  
πŸ“„ 14.3.13. spaCy  
πŸ“„ 14.13.14. NLTK  
πŸ“„ 14.4. Node.js  
πŸ“ 14.5. Ruby on Rails  
πŸ“„ 14.5.1. RSpec  
πŸ“„ 14.5.2. Minitest  
πŸ“„ 14.6. C#  
πŸ“„ 14.7. C++  
πŸ“ 14.8. JavaScript moderno (ES6+)  
πŸ“„ 14.8.1. Node.js  
πŸ“„ 14.8.2. Nuxt.js  
πŸ“„ 14.8.3. Three.js  
πŸ“„ 14.8.4. Next.js  
πŸ“„ 14.5.5. TypeScript  
πŸ“„ 14.5.6. Angular  
πŸ“„ 14.5.7. React  
πŸ“„ 14.5.7.1. React JS In React, I’ve developed complex frontends for SaaS platforms, admin dashboards, and mobile-responsive web applications. My experience includes React Hooks, Redux, Context API, and integrating with backend APIs. I’ve also focused on component reusability, performance optimization, and accessibility.
These projects were often part of agile teams in fast-paced environments, including both startups and mid-size tech companies.
This role requires working with and PSQL. Can you rate your proficiency with each and mention a complex task you handled using them
πŸ“„ 14.5.7.2. React Native  
πŸ“„ 14.9. HTML5  
πŸ“„ 14.10. VB.NET  
πŸ“„ 14.11. SQL  
πŸ“„ 14.12. R  
πŸ“ 15. Miscellaneous  
πŸ“„ 15.1. PENDING  
πŸ“„ 15.2. LookML  
πŸ“„ 15.3. PENDING  
πŸ“„ 15.4. BIQuickSight  
πŸ“„ 15.5. ATG Commerce  
πŸ“„ 15.6. Webflux  
πŸ“„ 15.7. SSR  
πŸ“„ 15.8. DDD  
πŸ“„ 15.9. Blazor  
πŸ“„ 15.10. SignalR  
πŸ“„ 15.11. Data Build Tool (DBT)  
πŸ“„ 15.12. Powershell  
πŸ“„ 15.13. Amazon Redshift  
πŸ“„ 15.14. DICOM  
πŸ“„ 15.15. DevExpress  
πŸ“„ 15.16. Buildkite Integration Pipelines  
πŸ“„ 15.17. Certina PSA  
πŸ“„ 15.18. Salesforce.com  
πŸ“„ 15.19. WebSockets  
πŸ“„ 15.20. GraphQL  
πŸ“„ 15.21. gRPC  
πŸ“„ 15.22. Webrtc  
πŸ“„ 15.23. KNIME Server  
πŸ“„ 15.24. Bantotal  
πŸ“„ 15.25. GeneXus Evolution  
πŸ“„ 15.26.. PENDING  
πŸ“„ 15.27. Malla  
πŸ“„ 15.28. GOAW  
πŸ“„ 15.29. Denodo  
πŸ“„ 15.30. ODS  
πŸ“„ 15.31. Zapier  
πŸ“„ 15.32. ServiceNow Automated Test Framework (ATF)  
πŸ“ 116. Crypto exchange environments  
πŸ“„ 16.1. Web3  
πŸ“„ 16.2. DeFi  
πŸ“„ 16.3. Blockchain Integrations, Smart Contracts, or Wallet services  
πŸ“ 17. APIs  
πŸ“„ 17.1 payments, fintech, or financial APIs  
πŸ“„ 17.2. Shopify  
πŸ“„ 17.3. Salesforce  
πŸ“„ 17.4. HubSpot  
πŸ“„ 17.5. Swagger/OpenAPI  
πŸ“„ 17.6. Stripe  
πŸ“„ 17.7. Plaid  
πŸ“„ 17.8. Mercury  
πŸ“„ 17.9. Optum  
πŸ“„ 17.10. Craft Commerce  
πŸ“„ 17.11. Global Payments  
πŸ“„ 17.12. FreedomPay  
πŸ“„ 17.13. Guesty  
πŸ“ 18. Data science/data engineer  
πŸ“„ 18.1. Data pipelines for processing large datasets  
πŸ“„ 18.2. bigquery From 2021 to 2025, managed and optimized data analytics workflows using Google BigQuery with SQL and Python 3.10 for ETL, reporting, and business intelligence tasks. Designed and executed complex queries, optimized data schemas, and implemented partitioning and clustering to improve query performance and cost efficiency. Integrated BigQuery with cloud storage, data pipelines, and visualization tools for scalable analytics solutions. Collaborated with cross-functional teams to ensure data accuracy, implement best practices, and support data-driven decision-making across projects.
πŸ“„ 18.3. Dataproc From 2021 to 2025, managed and deployed big data processing workflows using Google Cloud Dataproc with Python 3.10 and Spark 3.x for ETL, data transformation, and analytics tasks. Configured and optimized clusters for cost-efficient, scalable processing of large datasets, and implemented Spark jobs for batch and streaming data pipelines. Integrated Dataproc with BigQuery, Cloud Storage, and other GCP services to enable end-to-end data workflows. Collaborated with data engineering and analytics teams to ensure high performance, reliability, and accuracy of data pipelines in production environments.
πŸ“„ 18.4. Power BI  
πŸ“„ 18.5. Microsoft Fabric  
πŸ“„ 18.6. Microsoft Power Apps  
πŸ“„ 18.7. Microsoft DataVerse  
πŸ“ 18.8. ETL Tools  
πŸ“„ 18.8.1. Airflow  
πŸ“„ 18.8.2. Talend  
πŸ“„ 18.8.3. Spark  
πŸ“„ 18.8.4. Snowflake  
πŸ“„ 18.9. Looker Studio  
πŸ“„ 18.10. Tableau  
πŸ“„ 18.11. Airbyte  
πŸ“ 19. Testing  
πŸ“„ 19.1. NUnit  
πŸ“„ 19.2. Selenium  
πŸ“„ 19.3. Protractor  
πŸ“„ 19.4. Cypress  
πŸ“„ 19.5. Playwright  
πŸ“„ 19.6. Appium  
πŸ“„ 19.7. Capybara  
πŸ“„ 19.8. Cucumber  
πŸ“„ 19.9. JUnit  
πŸ“„ 19.10. Puppeteer  
πŸ“„ 19.11. Mochahands  
πŸ“„ 19.12. TestCafe  
πŸ“„ 19.13. TestRail  
πŸ“„ 19.14. Cucumber  
19.8. RSpec  
πŸ“ 20. Asychrnous Messaging  
πŸ“„ 20.1. Kafka  
πŸ“„ 20.2. RabbitMQ  
πŸ“„ 20.3. ActiveMQ  
πŸ“ 21. CI/CD  
πŸ“„ 21.1. Jenkins  
πŸ“„ 21.2. GitHub Actions  
πŸ“„ 21.3. Azure DevOps  
πŸ“„ 21.4. Fastlane  
πŸ“„ 21.5. Bitrise  
πŸ“ 22. Security  
πŸ“„ 22.1. OAuth 2.0  
πŸ“„ 22.2. OpenID Connect  
πŸ“„ 22.3. cifrado TLS From 2020 to 2025, implemented and maintained TLS/SSL encryption for secure communication in web and backend applications using Python 3.10, Java 11, and OpenSSL 1.1+. Configured TLS certificates, managed key rotation, and ensured compliance with industry security standards (TLS 1.2/1.3). Integrated encryption in client-server communications, APIs, and microservices to protect sensitive data in transit. Collaborated with DevOps and security teams to monitor, audit, and optimize encryption configurations for performance, reliability, and regulatory compliance.
πŸ“„ 22.4. Cumplimiento PCI DSS  
πŸ“„ 22.5. JWT  
πŸ“ 23. International Standards  
πŸ“„ 23.1. ISO 20022  
πŸ“„ 23.2. Open Banking  
πŸ“„ 23.3. BCBS  
πŸ“„ 23.4. CDD  
πŸ“„ 23.5. HIPAA  
πŸ“„ 23.6. DMBOK  
πŸ“„ 23.7. DAMA  
πŸ“„ 23.8. ISO 9000-1  
πŸ“„ 23.9. ISO53:197  
πŸ“„ 23.10. ISO53:193  
πŸ“„ 23.11. HPDH  
πŸ“„ 23.12. ISO 27001  
πŸ“„ 23.13. ANSI X12  
πŸ“„ 23.14. EDIFACT  
πŸ“ 24. Electronic Payment Systems  
πŸ“ 25. BPM  
πŸ“„ 25.1. Camunda  
πŸ“„ 25.2. Appian  
πŸ“„ 25.3. Bizagi  
πŸ“ 26. Monitoring Tools  
πŸ“„ 26.1. Datadog  
πŸ“„ 26.2. Splunk  

πŸ“„ 26.3. Application Insights

 
πŸ“„ 26.4. Log Analytics  
πŸ“„ 26.5. Prometheus  
πŸ“„ 26.6. Grafana