Autoencoder Example

This is a simple example of an Autoencoder using Python and TensorFlow/Keras.

Autoencoder Overview

Autoencoders are neural network architectures designed for unsupervised learning. They consist of an encoder network that compresses the input data into a lower-dimensional representation (encoding) and a decoder network that reconstructs the input data from this encoding. The goal of training an autoencoder is to minimize the reconstruction error, encouraging the model to learn a compact representation of the input data.

Key concepts of Autoencoders:

Autoencoders are versatile and can be applied to various types of data, including images, sequences, and tabular data.

Python Source Code:

# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist

# Load and preprocess the MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

# Define the architecture of the Autoencoder
encoding_dim = 32  # Size of the encoded representations
input_img = Input(shape=(784,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(784, activation='sigmoid')(encoded)

# Create the Autoencoder model
autoencoder = Model(input_img, decoded)

# Compile the model
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# Train the Autoencoder on the MNIST dataset
autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, shuffle=True, validation_data=(x_test, x_test))

# Encode and decode some digits from the test set
encoded_imgs = autoencoder.predict(x_test)
decoded_imgs = autoencoder.predict(encoded_imgs)

# Plot the original and reconstructed digits
n = 10  # Number of digits to display
plt.figure(figsize=(20, 4))
for i in range(n):
    # Original images
    ax = plt.subplot(2, n, i + 1)
    plt.imshow(x_test[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    # Reconstructed images
    ax = plt.subplot(2, n, i + 1 + n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

plt.show()

Explanation: