This is a simple example of Markov Chain Monte Carlo (MCMC) using Python and the PyMC3 library.
Markov Chain Monte Carlo (MCMC) is a family of algorithms used for sampling from complex probability distributions. It is particularly useful when direct sampling is impractical, and it provides a way to approximate the posterior distribution of model parameters given observed data. MCMC methods use Markov chains to explore the parameter space, and the samples generated converge to the desired distribution.
Key concepts of MCMC:
MCMC is widely used in Bayesian statistics for inference and parameter estimation.
Python Source Code:
# Import necessary libraries
import pymc3 as pm
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
# Generate synthetic data
np.random.seed(42)
observed_data = np.random.normal(loc=5, scale=2, size=100)
# Define Bayesian model using PyMC3
with pm.Model() as model:
# Define priors
mu = pm.Normal('mu', mu=0, sigma=10)
sigma = pm.HalfNormal('sigma', sigma=10)
# Define likelihood
likelihood = pm.Normal('likelihood', mu=mu, sigma=sigma, observed=observed_data)
# Use Metropolis-Hastings sampler for MCMC
trace = pm.sample(2000, tune=1000, chains=2)
# Plot posterior distribution
az.plot_posterior(trace, var_names=['mu', 'sigma'])
plt.show()
Explanation: